jueves, 16 de mayo de 2013

CONSIDERACIONES SOBRE EL DISEÑO DEL PRODUCTO



Los plásticos son un material importante de diseño, pero el diseñador debe estar alerta a sus limitaciones. En esta sección se enlistan algunos lineamientos de diseño para componentes de plástico, se comienza con las que se aplican en general y siguen las aplicables a la extrusión y moldeo (moldeo por inyección, por compresión y transferencia).

1) Consideraciones generales
Estos lineamientos generales se aplican sin importar el proceso de formado. Sobre todo son limitaciones de los materiales plásticos que el diseñador debe tomar en consideración.

·         Resistencia y rigidez: Los plásticos no son tan fuertes o rígidos como los metales.
No deben usarse en aplicaciones en las que se vayan a encontrar esfuerzos grandes.
La resistencia al escurrimiento plástico también es una limitante. Las propiedades de resistencia varían en forma significativa entre los plásticos, y en ciertas aplicaciones las razones resistencia a peso de algunos de ellos son competitivas con las de los metales.
  •  Resistencia al impacto: La capacidad que tienen los plásticos de absorber impactos por lo general es buena; se comparan de modo favorable con la mayoría de metales.
  • Temperaturas de servicio: Con respecto de las de los metales y cerámicos, las de los plásticos son limitadas.
  •  Expansión térmica: Es mayor para los plásticos que para los metales, por lo que los cambios dimensionales debidos a las variaciones de temperatura son mucho más significativos que para los metales.
Muchos tipos de plásticos están sujetos a degradación por la luz solar y otras formas de radiación. Asimismo, algunos se degradan en atmósferas de oxígeno y ozono.



2) Plásticos extruidos
·         Espesor de pared: En la sección transversal extruida es deseable un espesor uniforme de la pared. Las variaciones de éste darán como resultado un flujo no uniforme del plástico y enfriamiento irregular que tenderá a pandear el extruido.
·         Secciones huecas: Éstas complican el diseño del troquel y el flujo del plástico. Es deseable utilizar secciones transversales extruidas que no sean huecas, pero que satisfagan los requerimientos funcionales.
·     Esquinas: En la sección transversal deben evitarse las esquinas agudas, dentro y fuera, porque dan como resultado un flujo irregular durante el procesamiento, y concentraciones de esfuerzos en el producto final.

3) Piezas moldeadas
  • Cantidades económicas de producción: Cada pieza moldeada requiere un molde único, el cual para cualquiera de estos procesos es costoso, en particular para el moldeo por inyección. Las cantidades mínimas de producción para este proceso son de alrededor de 10 000 piezas; para el moldeo por compresión, 1000 piezas es lo mínimo, debido a los diseños más sencillos del molde que se necesita. El moldeo por transferencia se ubica entre las dos cifras anteriores.
  • Complejidad de la pieza: Si bien las configuraciones geométricas más complejas de la pieza significan moldes más costosos, puede ser económico diseñar un molde complejo si la alternativa involucra muchos componentes individuales que se ensamblen juntos.
  • Espesor de pared: Las secciones transversales gruesas por lo general son indeseables; con ellas se desperdicia material, es más probable que se causen pandeos por la contracción y les toma más tiempo endurecer.
  • Costillas de refuerzo: Se emplean en las piezas de plástico moldeado para obtener mayor rigidez sin un espesor de pared excesivo. Las costillas deben ser más delgadas que las paredes que refuerzan, a fin de minimizar las marcas de hundimiento en la pared exterior.
  • Radios de las esquinas y biseles: Las esquinas agudas, tanto externas como internas, son indeseables en las piezas moldeadas; interrumpen el flujo suave del material fundido, tienden a crear defectos superficiales y ocasionan la concentración de los esfuerzos en la pieza terminada.
  • Agujeros: Es muy factible que ocurran en los moldeos de plástico, pero complican el diseño del molde y la remoción de la pieza. También generan interrupciones en el flujo del material fundido.
  • Ahusado: Una pieza moldeada debe diseñarse con un ahusado en sus lados para facilitar la remoción del molde. Esto tiene importancia especial en la pared interior de una pieza en forma de taza, porque el plástico moldeado se contrae contra la forma positiva molde. El ahusado recomendable para los termofijos es alrededor de 1/2º a 1º; para
  • Tolerancias: Especifican las variaciones permisibles de la manufactura de una pieza. Aunque la contracción es predecible en condiciones muy controladas, son deseables tolerancias generosas para los moldeos por inyección debido a la variación de los parámetros del proceso que afectan la contracción, y a la diversidad de formas geométricas que existen para las piezas. En la tabla 13.2 se listan las tolerancias comunes para las dimensiones de piezas moldeadas con plásticos seleccionados.

PROCESAMIENTO Y FORMADO DE ESPUMA DE POLÍMERO


Una espuma de polímero es una mezcla de polímero y gas, lo que da al material una estructura porosa o celular. Otros términos que se emplean para las espumas de polímero incluyen polímero celular, polímero soplado y polímero expandido. Las espumas de polímero más comunes son el poliestireno (Styrofoam, marca registrada) y poliuretano. Otros polímeros que se utilizan para fabricar espumas incluyen cauchos naturales (“caucho espumado”) y cloruro de polivinilo (PVC).
Las propiedades características de un polímero espumado incluyen:
1) baja densidad,
2) alta resistencia por unidad de peso
3) buen aislamiento térmico
4) buenas cualidades de absorción de energía. La elasticidad del polímero base determina la propiedad correspondiente de la espuma.
Las espumas de polímero se clasifican
1) elastoméricas, en las que la matriz de polímero es un caucho, capaz de una gran deformación elástica
2) flexible, en el que la matriz es un polímero muy plástico tal como el PVC suave
3) rígido, en el que el polímero es un termoplástico rígido tal como el poliestireno o un plástico termofijo como un fenólico. En función de la formulación química y grado de entrecruzamiento, el poliuretano varía entre las tres categorías.

1) Procesos de espumado
Los gases comunes que se usan en las espumas de polímero son aire, nitrógeno y dióxido de carbono. La proporción del gas varía hasta 90% o más. Éste se introduce en el polímero con varios métodos, llamados procesos de espumado. Éstos incluyen:
1) mezclar una resina líquida con aire por agitación mecánica, después se endurece el polímero por medio de calor o reacción química
2) mezclar un agente de soplado físico con el polímero, un gas como el nitrógeno (N2) o el pentano (C5H12), que se disuelve en el polímero fundido sujeto a presión, de modo que el gas sale de la solución y se expande cuando después se reduce la presión
3) se mezcla el polímero con componentes químicos, llamados agentes de soplado químicos que se descomponen a temperaturas altas y liberan gases tales como el CO2 o el N2 dentro de la mezcla.

2) Procesos de conformado
Hay muchos procesos para dar forma a los productos de espuma de polímero. Como las dos espumas más importantes son el poliestireno y el poliuretano, el presente análisis se limita a los procesos de conformación de estos dos materiales. Debido a que el poliestireno es un termoplástico y el poliuretano puede ser un termofijo o bien un elastómero (también un termoplástico, pero es menos importante en esta forma), los procesos que se estudian aquí para dichos materiales son representativos de los que se emplean en otras espumas de polímero.


FUNDICIÓN



En la conformación de polímeros, la fundición involucra verter una resina líquida a un molde, con el uso de la gravedad para llenar la cavidad, y dejar que el polímero se endurezca.
Tanto los termoplásticos como los termofijos se funden. Algunos ejemplos de los primeros incluyen los acrílicos, poliestireno, poliamidas (nylon) y vinilos (PVC). La conversión de la resina líquida en un termoplástico endurecido se lleva a cabo de varias maneras, que incluyen
1) calentar la resina termoplástica a un estado muy fluido de modo que se vierta y llene la cavidad del molde con facilidad, y después se le deja enfriar y solidificar en el molde
2) usar un prepolímero (o monómero) de peso molecular bajo y polimerizarlo en el molde para que forme un termoplástico de peso molecular elevado
3) verter un plastisol (suspensión líquida de partículas finas de una resina termoplástica como el PVC, en un plastificador) en un molde calentado para que forme un gel y se solidifique.

Las ventajas de la fundición sobre procesos alternativos como el moldeo por inyección incluyen las siguientes:
1) el molde es más sencillo y menos costoso
2) el artículo fundido está relativamente libre de esfuerzos residuales y memoria visco elástica
3) el proceso es apropiado para cantidades pequeñas de producción. Al centrarnos en la segunda ventaja, las hojas de acrílico (plexiglás, Lucite), por lo general, se funden entre dos placas de vidrio muy pulidas. El proceso de fundición permite un grado alto de aplanamiento y que se logren las cualidades ópticas que son deseables en las hojas de plástico transparente. Dicho aplanamiento y transparencia no pueden obtenerse con la extrusión de hojas planas. Una desventaja de ciertas aplicaciones es la contracción significativa de la pieza fundida durante la solidificación. Por ejemplo, las hojas de acrílico pasan por una contracción volumétrica de alrededor de 20% cuando se funden. Esto es mucho más que en el moldeo por inyección, en el que se emplean presiones elevadas para comprimir la cavidad del molde a fin de reducir la contracción.
La fundición en hueco es una alternativa a la fundición convencional; se deriva de la tecnología de fundición de metal. En la fundición en hueco, se vierte un plastisol líquido en la cavidad de un molde de deslizamiento caliente, por lo que se forma una capa en la superficie del molde. Después de una duración que depende del espesor que se desea tenga la capa, se extrae el exceso de líquido del molde; luego se abre este para retirar la pieza.

TERMOFORMADO


El termoformado es un proceso en el que se calienta y deforma una hoja plana termoplástica para hacer que adquiera la forma deseada. El proceso se utiliza mucho para empacar productos de consumo y para fabricar artículos grandes como tinas de baño, reflectores de contorno y forros interiores de puertas para refrigeradores.


El termoformado consiste en dos etapas principales:

1) calentamiento

2) formado.









Termoformado al vacío El primer método fue el termoformado al vacío (llamado tan sólo formado al vacío, cuando se creó en la década de 1950) en el que se utiliza una presión negativa para empujar una hoja precalentada contra la cavidad de un molde.

Termoformado de presión Una alternativa para formar al vacío involucra a una presión positiva que fuerza al plástico calentado hacia la cavidad del molde. Ésta se llama

termoformado de presión, o formado por soplado; su ventaja sobre el formado al vacío es que es posible generar presiones más grandes, ya que esta última se limita a un máximo teórico de 1 atm.



Un molde positivo tiene forma convexa. En el termoformado se utilizan ambos tipos. En el caso del molde positivo, la hoja calentada se oprime sobre la forma convexa y se utiliza presión negativa o positiva para forzar al plástico contra la superficie del molde.


MOLDEO POR SOPLADO Y MOLDEO ROTACIONAL



Estos dos procesos se emplean para fabricar piezas huecas y sin costura de polímeros termoplásticos. El moldeo rotacional también se utiliza para termofijos.


1) El moldeo por soplado Es un proceso en el que se utiliza presión del aire para inflar plástico suave dentro de la cavidad de un molde. Es un proceso industrial importante para fabricar piezas de plástico huecas, de una sola pieza y con paredes delgadas, como botellas y contenedores similares. Debido a que muchos de esos artículos se utilizan para bebidas para el consumidor destinadas a mercados masivos, su producción está organizada para cantidades muy grandes. La tecnología proviene de la industria del vidrio, con la que los plásticos compiten en el mercado de las botellas

Moldeo por soplado y extrusión Esta forma de moldear consiste en el ciclo. En la mayoría de casos el proceso se organiza como operación de producción elevada para fabricar botellas de plástico. La secuencia es automática y, por lo general, se integra con operaciones posteriores tales como el llenado y etiquetado de las botellas.


.
2) Moldeo rotacional
El moldeo rotacional utiliza la gravedad en lugar de un molde rotatorio, a fin de lograr una forma hueca. El también llamado rotomoldeo es una alternativa al moldeo por soplado a fin de fabricar formas grandes y huecas. Se emplea principalmente para polímeros termoplásticos, pero cada vez son más comunes las aplicaciones para termofijos y elastómeros
El proceso consiste en las siguientes etapas:
1) se carga una cantidad predeterminada de polvo de polímero en la cavidad de un molde deslizante.
2) Después se calienta el molde y se gira en forma simultánea sobre dos ejes perpendiculares, de modo que el polvo impregna todas las superficies interiores del molde, y forma gradualmente una capa fundida de espesor uniforme.
3) Mientras aún gira, el molde se enfría de modo que la capa exterior de plástico se solidifica.
4) Se abre el molde y se descarga la pieza. Las velocidades rotacionales que se emplean en el proceso son relativamente bajas. Es la gravedad, no la fuerza centrífuga, la que genera el recubrimiento uniforme de las superficies del molde.


Con moldeo rotacional se elabora una variedad fascinante de artículos. La lista incluye juguetes huecos tales como caballitos y pelotas; cascos de lanchas y canoas, cajas de arena, alberquitas; boyas y otros dispositivos de flotación; elementos de cajas de tráiler, tableros automotrices, tanques de combustible; piezas de equipaje, mobiliario, botes para basura; maniquíes; barriles industriales de gran tamaño, contenedores y tanques de almacenamiento; excusados portátiles, y tanques sépticos. El material más utilizado para moldear es el polietileno, en especial el HDPE. Otros plásticos incluyen el polipropileno.

MOLDEO POR COMPRESIÓN Y TRANSFERENCIA


En esta sección se estudian dos técnicas que se emplean mucho para polímeros termos fijos y elastómeros. Para los termoplásticos, estas técnicas no alcanzan la eficiencia del moldeo por inyección, excepto para aplicaciones muy especiales.


1) Moldeo por compresión

Es un proceso antiguo y muy utilizado para plásticos termofijos. Sus aplicaciones también incluyen discos de fonógrafo termoplásticos, llantas de caucho y varias piezas compuestas de matriz de polímero. El proceso, que se ilustra en la figura 13.28 para un plástico TS consiste en

1) cargar la cantidad precisa del compuesto de moldeo, llamada carga, en la mitad inferior de un molde calentado

2) juntar las mitades del molde para comprimir la carga, forzarla a que fluya y adopte la forma de la cavidad

3) calentar la carga por medio del molde caliente para polimerizar y curar el material en una pieza solidificada

4) abrir las mitades del molde y retirar la pieza de la cavidad.







La carga inicial del compuesto para el moldeo puede estar en varias formas, incluso polvo o pellets, líquida o preformada. La cantidad de polímero debe controlarse con precisión para obtener consistencia repetible en el producto moldeado. Se ha vuelto práctica común precalentar la carga antes de colocarla en el molde; esto suaviza al polímero y acorta la duración del ciclo de producción. Los métodos de precalentamiento incluyen calentadores infrarrojos, convección en un horno y uso de tornillo rotatorio caliente en un barril. La última técnica (tomada del moldeo por inyección) también se usa para medir la cantidad de la carga.

2) Moldeo por transferencia
En este proceso se introduce una carga termofija (preformada) a una cámara inmediatamente delante de la cavidad del molde, donde se calienta; después se aplica presión para forzar al polímero suavizado a fluir hacia el molde caliente en el que ocurre la cura. Hay dos variantes del proceso, que se ilustra en la figura 13.29: a) moldeo por transferencia de vasija, en el que la carga se inyecta desde una “vasija” a través de un canal de mazarota vertical en la cavidad; y b) moldeo por transferencia de pistón, en el que la carga se inyecta por medio de un pistón desde un depósito caliente a través de canales laterales hacia la cavidad del molde. En ambos casos, en cada ciclo se generan desperdicios en forma de material sobrante en la base del depósito y los canales laterales, llamado desecho. Además, en la transferencia de vasija el bebedero constituye material que se desperdicia. Debido a que los polímeros son termofijos, los desechos no pueden recuperarse.

MOLDEO POR INYECCIÓN



El moldeo por inyección es un proceso con el que se calienta un polímero hasta que alcanza un estado muy plástico y se le fuerza a que fluya a alta presión hacia la cavidad de un molde, donde se solidifica. Entonces, la pieza moldeada, llamada moldeo, se retira de la cavidad.


El proceso produce componentes discretos que casi siempre son de forma neta. Es común que el ciclo de producción dure de 10 a 30 segundos, aunque no son raros ciclos de un minuto o más. Asimismo, el molde puede contener más de una cavidad, de modo que en cada ciclo se producen molduras múltiples

1) Proceso y equipo
La unidad de sujeción se relaciona con la operación del molde. Sus funciones son
1) mantener las dos mitades del molde alineadas en forma correcta una con otra,
2) mantener cerrado al molde durante la inyección, por medio de la aplicación de una fuerza que lo sujeta lo suficiente para resistir la fuerza de inyección
3) abrir y cerrar el molde en los momentos apropiados del ciclo de inyección. La unidad de abrazadera consiste en dos placas, una fija y otra móvil, y un mecanismo para mover ésta.
El mecanismo básicamente es una prensa de potencia que funciona por medio de un pistón hidráulico o dispositivos de palanca mecánica de varios tipos. Las máquinas grandes disponen de fuerzas de abrazadera de varios miles de toneladas.



2) Máquinas de moldeo por inyección
Las máquinas de moldeo por inyección difieren tanto en la unidad de inyección como en la de sujeción. En esta sección se estudia los tipos importantes de hoy día. El nombre de la máquina de moldeo por inyección por lo general se basa en el tipo de unidad inyectora que se emplea.

Unidades de inyección En la actualidad son dos tipos de unidades de inyección los que más se utilizan.

Unidades de sujeción Los diseños de sujeción son de tres tipos: de palanca, hidráulica e hidromecánica. La sujeción de palanca incluye varios diseños, uno de los cuales se ilustra

3) Contracción
Los polímeros tienen coeficientes de expansión térmica elevados, y durante el enfriamiento del plástico en el molde ocurre una contracción significativa. Algunos termoplásticos sufren una contracción volumétrica de alrededor de 10% después de la inyección en el molde. La contracción de plásticos cristalinos tiende a ser mayor que para los polímeros amorfos. La contracción se expresa por lo general como la reducción en el tamaño lineal que ocurre durante el enfriamiento a temperatura ambiente a partir de la temperatura del molde para el polímero dado. Por ello, las unidades apropiadas son mm/mm (in/in) de la dimensión en estudio.
.
4) Defectos en el moldeo por inyección
Disparos cortos: Igual que en el fundido, un disparo corto es un moldeo que se solidifica incrementa la temperatura y/o la presión. El defecto también surge por el uso de una máquina con capacidad de disparo insuficiente, caso en el que es necesario un aparato más grande.
Rebabas: Las salpicaduras ocurren cuando el polímero fundido se escurre por la superficie de separación, entre las placas del molde; también sucede alrededor de los pasadores de inyección. Por lo general, el defecto lo ocasionan
1) conductos y claros demasiado grandes en el molde
2) presión de inyección demasiado alta en comparación con la fuerza de sujeción
3) temperatura de fusión demasiado elevada
4) tamaño excesivo del disparo.

Marcas de hundimiento y vacíos: Éstos son defectos que por lo general se relacionan con secciones moldeadas gruesas. Una marca de hundimiento ocurre cuando la superficie exterior del molde se solidifica, pero la contracción del material del interior hace que la capa se reduzca por debajo del perfil que se planeaba. Un vacío es ocasionado por el mismo fenómeno básico; sin embargo, el material de la superficie conserva su forma y la contracción se manifiesta como un vacío interno debido a fuerzas de tensión grandes sobre el polímero que aún está fundido. Estos defectos se eliminan con el incremento de la presión de compactación posterior a la inyección. Una mejor solución consiste en diseñar la pieza para tener espesor uniforme de la sección, y utilizar secciones más delgadas.

Líneas de soldadura: Las líneas de soldadura ocurren cuando el polímero fundido fluye alrededor de un núcleo o de otro detalle convexo en la cavidad del molde, y se encuentra desde direcciones opuestas; la frontera así formada se denomina línea de soldadura, y tiene propiedades mecánicas inferiores a las del resto de la pieza.

5) Otros procesos del moldeo por inyección
La mayoría de las aplicaciones del moldeo por inyección involucran a los termoplásticos.
En esta sección se describen algunas variaciones del proceso.
Moldeo por inyección de espuma termoplástica Las espumas de plástico tienen varias aplicaciones, y en la sección 13.11 se estudian dichos materiales y su procesamiento. Uno de los procesos, en ocasiones llamado moldeo de espuma estructural, es apropiado que se estudie aquí porque se trata de moldeo por inyección. Involucra el moldeo de piezas de termoplástico que poseen una capa exterior densa que rodea a un centro de espuma ligera. Dichas piezas tienen razones de rigidez a peso apropiadas para las aplicaciones estructurales.

Procesos de moldeo por inyección múltiple Es posible obtener efectos poco usuales por medio de la inyección múltiple de polímeros diferentes para moldear una pieza. Los polímeros se inyectan en forma simultánea o secuencial, y puede haber más de una cavidad de molde involucrada. Varios procesos caen en este rubro, todos caracterizados por dos o más unidades de inyección; así, el equipamiento para estos procesos es caro.

Moldeo por inyección de reacción El moldeo por inyección de reacción (RIM, por sus siglas en inglés) involucra la mezcla de dos ingredientes líquidos muy reactivos, con la inyección inmediata de ésta en la cavidad de un molde, donde reacciones químicas hacen que ocurra la solidificación. Los dos ingredientes forman los componentes empleados en sistemas activados por catalizadores o por mezcla. Los uretanos, epóxidos y formaldehídos de urea son ejemplos de estos sistemas. El RIM se desarrolló con el poliuretano para producir grandes componentes automotrices tales como defensas, alerones y salpicaderas. Esta clase de piezas constituye la aplicación principal del proceso.